Resistance Proportional to Speed

Basic Equation: $R \propto v$ but in opposite direction. $\quad \therefore R=\lambda v$, where $\lambda<0$
Physically, R is determined by many factors, but let's (artificially) define $k=-\frac{\lambda}{m}>0$,
so $R=\lambda v=-m k v \quad$ (opposite to v).
$R=-m k v$ is downwards went the particle is going up $(R<0$ when $v>0)$, and upwards when it is going down.
$m \ddot{x}=-W+R=-m g-m k v \quad(W=m g>0$ but is always a downward force; $g>0$ here $)$
$\therefore \quad \ddot{x}=-g-k v \quad$ and $\quad R=-m k v, \quad$ where $k>0$

Given a vertical initially upwards projectile with initial speed u, i.e. where $t=0, x=0, \dot{x}=u>0$,
v in terms of t :

$$
\begin{aligned}
& v=u e^{-k t}-\frac{g}{k}\left(1-e^{-k t}\right)=-\frac{g}{k}+\frac{g+k u}{k} \cdot e^{-k t} \\
& \frac{d v}{d t}=\ddot{x}=-g-k v, \quad \frac{d t}{d v}=\frac{1}{-g-k v}, \quad t=\int_{u}^{v} \frac{d v}{-g-k v}=-\frac{1}{k}[\ln (g+k v)]_{u}^{v}=-\frac{1}{k} \ln \left(\frac{g+k v}{g+k u}\right) \\
& e^{-k t}=\frac{g+k v}{g+k u}, \quad g+k v=(g+k u) e^{-k t}, \quad v=\frac{1}{k}\left(g e^{-k t}+k u e^{-k t}-g\right)=u e^{-k t}-\frac{g}{k}\left(1-e^{-k t}\right)
\end{aligned}
$$

Likewise, $\quad t=\frac{1}{k} \ln \left(\frac{g+k u}{g+k v}\right)$
x in terms of $v: x=\frac{1}{k}\left[u-v+\frac{g}{k} \ln \left(\frac{g+k v}{g+k u}\right)\right]$
$v \cdot \frac{d v}{d x}=-g-k v, \quad \frac{d x}{d v}=\frac{v}{-g-k v}, \quad x=\int_{u}^{v} \frac{v}{-g-k v} d v$
$x=-\frac{1}{k} \int_{u}^{v} 1-\frac{g}{g+k v} d v=-\frac{1}{k}\left[(v-u)-\frac{g}{k}[\ln (g+k v)]_{u}^{v}\right]=\frac{1}{k}\left[u-v+\frac{g}{k} \ln \left(\frac{g+k v}{g+k u}\right)\right]$
x in terms of t :

$$
\begin{aligned}
& x=-\frac{g}{k} t+\left(\frac{g+k u}{k^{2}}\right)\left(1-e^{-k t}\right) \\
& x=\int_{0}^{t} v d t=\int_{0}^{t}\left(-\frac{g}{k}+\frac{g+k u}{k} \cdot e^{-k t}\right) d t=-\frac{g}{k} t+\left(\frac{g+k u}{k^{2}}\right) \cdot\left(1-e^{-k t}\right)
\end{aligned}
$$

Max height H at $T: \quad T=\frac{1}{k} \ln \left(\frac{g+k u}{g}\right)=\frac{u-k H}{g}$
At $\max , t=T$ and $\frac{d x}{d t}=v=0$, i.e. $-\frac{g}{k}+\frac{g+k u}{k} \cdot e^{-k T}=0$
$(g+k u) e^{-k T}=g, \quad e^{-k T}=\frac{g}{g+k u}, \quad-k T=\ln \left(\frac{g}{g+k u}\right), \quad T=\frac{1}{k} \ln \left(\frac{g+k u}{g}\right)$
When $x=H, v=0$, so
$H=x(T)=\frac{1}{k}\left[u-0+\frac{g}{k} \ln \left(\frac{g+k \cdot 0}{g+k u}\right)\right]=\frac{1}{k}\left[u+\frac{g}{k}(-\not k T)\right]=\frac{u-g T}{k}$
$T=\frac{u-k H}{g}$

Free Fall: Based on the above formulae, but with $u=0$ and the x-axis is downward, so the signs of the x, v and \ddot{x} variables need to be negated in those formulae.
e.g. $-\ddot{x}=-g-k(-v), \quad \ddot{x}=g-k v$
v in terms of $t: \quad v=\frac{g}{k}\left(1-e^{-k t}\right) \quad$ and $\quad t=\frac{1}{k} \ln \left(\frac{g}{g-k v}\right)$
Terminal Velocity: $\quad v_{T}=\lim _{t \rightarrow+\infty} v=\lim _{t \rightarrow+\infty} \frac{g}{k}\left(1-e^{-k t}\right)=\frac{g}{k}$
Also, $\ddot{x}=g-k v_{T}=0, \quad \therefore v_{T}=\frac{g}{k}$
x in terms of $v: \quad x=-\frac{v}{k}-\frac{g}{k^{2}} \ln \left(1-\frac{k v}{g}\right)$
x in terms of $t: \quad x=\frac{g}{k} t-\frac{g}{k^{2}}\left(1-e^{-k t}\right)$

