
Resistance Proportional to Speed

Basic Equation: R ∝ v but in opposite direction. ∴ R = λv , where λ < 0

Physically, R is determined by many factors, but let’s (artificially) define k = − λ
m > 0,

so R = λv = −mkv (opposite to v).
R = −mkv is downwards went the particle is going up (R < 0 when v > 0),
and upwards when it is going down.
mẍ = −W + R = −mg −mkv (W = mg > 0 but is always a downward force; g > 0 here)

∴ ẍ = −g − kv and R = −mkv , where k > 0

Given a vertical initially upwards projectile with initial speed u, i.e. where t = 0, x = 0, ẋ = u > 0,
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Free Fall: Based on the above formulae, but with u = 0 and the x-axis is downward,
so the signs of the x, v and ẍ variables need to be negated in those formulae.

e.g. − ẍ = −g − k(−v) , ẍ = g − kv
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